Publicaciones (seleccione año o grupo)

  1. Aparicio, T., de Lorenzo, V., Martínez-García, E., 2020. A Broad Host Range Plasmid-Based Roadmap for ssDNA-Based Recombineering in Gram-Negative Bacteria, in: de la Cruz, F. (Ed.), Horizontal Gene Transfer: Methods and Protocols, Methods in Molecular Biology. Springer US, New York, NY, pp. 383–398. doi: 10.1007/978-1-4939-9877-7_27
  2. Baquero, F., F. Lanza, V., Duval, M., Coque, T.M., 2020. Ecogenetics of antibiotic resistance in Listeria monocytogenes. Molecular Microbiology 113, 570–579. doi: 10.1111/mmi.14454
  3. Campos, M., San Millán, Á., Sempere, J.M., Lanza, V.F., Coque, T.M., Llorens, C., Baquero, F., 2020. Simulating the Influence of Conjugative-Plasmid Kinetic Values on the Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. Antimicrob Agents Chemother 64, e00593-20. doi: 10.1128/AAC.00593-20
  4. Guirao-Abad, J.P., Sánchez-Fresneda, R., Román, E., Pla, J., Argüelles, J.C., Alonso-Monge, R., 2020. The MAPK Hog1 mediates the response to amphotericin B in Candida albicans. Fungal Genet Biol 136, 103302. doi: 10.1016/j.fgb.2019.103302
  5. Peñalva, M.A., Moscoso-Romero, E., Hernández-González, M., 2020. Tracking exocytosis of a GPI-anchored protein in Aspergillus nidulans. Traffic 21, 675–688. doi: 10.1111/tra.12761
  6. Sanz-García, F., Sánchez, M.B., Hernando-Amado, S., Martínez, J.L., 2020. Evolutionary landscapes of Pseudomonas aeruginosa towards ribosome-targeting antibiotic resistance depend on selection strength. International Journal of Antimicrobial Agents 55, 105965. doi: 10.1016/j.ijantimicag.2020.105965
  7. Saralegui, C., Ponce-Alonso, M., Pérez-Viso, B., Moles Alegre, L., Escribano, E., Lázaro-Perona, F., Lanza, V.F., de Pipaón, M.S., Rodríguez, J.M., Baquero, F., del Campo, R., 2020. Genomics of Serratia marcescens Isolates Causing Outbreaks in the Same Pediatric Unit 47 Years Apart: Position in an Updated Phylogeny of the Species. Front Microbiol 11, 451. doi: 10.3389/fmicb.2020.00451
  8. Ting, S.-Y., Martínez-García, E., Huang, S., Bertolli, S.K., Kelly, K.A., Cutler, K.J., Su, E.D., Zhi, H., Tang, Q., Radey, M.C., Raffatellu, M., Peterson, S.B., de Lorenzo, V., Mougous, J.D., 2020. Targeted Depletion of Bacteria from Mixed Populations by Programmable Adhesion with Antagonistic Competitor Cells. Cell Host & Microbe 28, 313-321.e6. doi: 10.1016/j.chom.2020.05.006
  9. Liu, X., Hong, Z., Liu, J., Lin, Y., Rodriguez-Paton, A., Zou, Q., Zeng, X. (2019). Computational methods for identifying the critical nodes in biological networks. Brief Bioinform. doi: 10.1093/bib/bbz011
  10. Algar, E., Al-Ramahi, Y., de Lorenzo, V., Martínez-García, E. (2020). Environmental Performance of Pseudomonas putida with a Uracylated Genome. ChemBioChem 21, 3255–3265. doi: 10.1002/cbic.202000330
  11. Espeso, D.R., Algar, E., Martínez-García, E., de Lorenzo, V. (2020). Exploiting geometric similarity for statistical quantification of fluorescence spatial patterns in bacterial colonies. BMC Bioinformatics 21, 224. doi: 10.1186/s12859-020-3490-1
  12. Páez-Espino, A.D., Nikel, P.I., Chavarría, M., de Lorenzo, V. (2020). ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic. Environmental Microbiology 22, 2230–2242. doi: 10.1111/1462-2920.14991
  13. Alonso-Monge, R., et al. (2020). The Fungicidal Action of Micafungin is Independent on Both Oxidative Stress Generation and HOG Pathway Signaling in Candida albicans. Microorganisms 8, 1867. doi: 10.3390/microorganisms8121867
  14. Aparicio, T., Nyerges, A., Martínez-García, E., de Lorenzo, V. (2020). High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering. iScience 23, 100946. doi: 10.1016/j.isci.2020.100946
  15. Aparicio, T., et al. (2020). Mismatch repair hierarchy of Pseudomonas putida revealed by mutagenic ssDNA recombineering of the pyrF gene. Environmental Microbiology 22, 45-58. doi: 10.1111/1462-2920.14814
  16. Coronas-Serna, J.M., et al. (2020). The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathogens 16, e1007979. doi: 10.1371/journal.ppat.1007979
  17. Coronas-Serna, J.M., et al. (2020). Modeling human disease in yeast: recreating the PI3K-PTEN-Akt signaling pathway in Saccharomyces cerevisiae. International Microbiology 23, 75-87. doi: 10.1007/s10123-019-00082-4
  18. Durante-Rodríguez, G., Calles, B., De Lorenzo, V., Nikel, P.I. (2020). A SsrA/NIa-based Strategy for Post-Translational Regulation of Protein Levels in Gram-negative Bacteria. Bio-protocol 10, e3688. doi: 10.21769/BioProtoc.3688
  19. Dvořák, P., Bayer, E.A., de Lorenzo, V. (2020). Surface Display of Designer Protein Scaffolds on Genome-Reduced Strains of Pseudomonas putida. ACS Synthetic Biology 9, 2749-2764. doi: 10.1021/acssynbio.0c00276
  20. Dvořák, P., Kováč, J., de Lorenzo, V. (2020). Biotransformation of D‐xylose to D‐xylonate coupled to medium‐chain‐length polyhydroxyalkanoate production in cellobiose‐grown Pseudomonas putida EM42. Microbial Biotechnology 13, 1273-1283. doi: 10.1111/1751-7915.13574
  21. Espeso, D.R., Dvořák, P., Aparicio, T., Lorenzo, V.d. An automated DIY framework for experimental evolution of Pseudomonas putida. Microbial Biotechnology n/a. doi: 10.1111/1751-7915.13678
  22. Garcia-Martin, J.A., Chavarría, M., de Lorenzo, V., Pazos, F. (2020). Concomitant prediction of environmental fate and toxicity of chemical compounds. Biology Methods & Protocols 5, bpaa025. doi: 10.1093/biomethods/bpaa025
  23. Gil-Gil, T., Corona, F., Martínez, J.L., Bernardini, A. The Inactivation of Enzymes Belonging to the Central Carbon Metabolism Is a Novel Mechanism of Developing Antibiotic Resistance. mSystems 5, e00282-00220. doi: 10.1128/mSystems.00282-20
  24. Hernando-Amado, S., Coque, T.M., Baquero, F., Martínez, J.L. (2020). Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Frontiers in Microbiology 11, 1914. doi: 10.3389/fmicb.2020.01914
  25. Hernando-Amado, S., Sanz-García, F., Martínez, J.L. (2020). Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants. Science Advances 6, eaba5493. doi: 10.1126/sciadv.aba5493
  26. Herrero-de-Dios, C., Román, E., Pla, J., Alonso-Monge, R. (2020). Hog1 Controls Lipids Homeostasis Upon Osmotic Stress in Candida albicans. Journal of Fungi 6, 355. doi: 10.3390/jof6040355
  27. Hueso-Gil, Á., Calles, B., Lorenzo, V.d. (2020). The Wsp intermembrane complex mediates metabolic control of the swim-attach decision of Pseudomonas putida. Environmental Microbiology 22, 3535-3547. doi: 10.1111/1462-2920.15126
  28. Hueso-Gil, A., Nyerges, Á., Pál, C., Calles, B., de Lorenzo, V. (2020). Multiple-Site Diversification of Regulatory Sequences Enables Interspecies Operability of Genetic Devices. ACS Synthetic Biology 9, 104-114. doi: 10.1021/acssynbio.9b00375
  29. Jiménez-Gutiérrez, E., et al. (2020). Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation. The FEBS Journal 287, 4881-4901. doi: 10.1111/febs.15288
  30. Jiménez-Gutiérrez, E., Alegría-Carrasco, E., Sellers-Moya, Á., Molina, M., Martín, H. (2020). Not just the wall: the other ways to turn the yeast CWI pathway on. International Microbiology 23, 107-119. doi: 10.1007/s10123-019-00092-2
  31. Lira, F., Vaz-Moreira, I., Tamames, J., Manaia, C.M., Martínez, J.L. (2020). Metagenomic analysis of an urban resistome before and after wastewater treatment. Scientific Reports 10, 8174. doi: 10.1038/s41598-020-65031-y
  32. Martínez-García, E., et al. (2020). Naked Bacterium: Emerging Properties of a Surfome-Streamlined Pseudomonas putida Strain. ACS Synthetic Biology 9, 2477-2492. doi: 10.1021/acssynbio.0c00272
  33. Martínez-García, E., et al. (2020). SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Research 48, D1164-D1170. doi: 10.1093/nar/gkz1024
  34. Román, E., Correia, I., Prieto, D., Alonso, R., Pla, J. (2020). The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway. International Microbiology 23, 23-29. doi: 10.1007/s10123-019-00069-1
  35. Zeng, X., et al. (2020). Deep Collaborative Filtering for Prediction of Disease Genes. IEEE/ACM Transactions on Computational Biology and Bioinformatics 17, 1639-1647. doi: 10.1109/TCBB.2019.2907536
Actualizado 12/01/2022
© S2017/BMD-3691 InGEMICS-CM